Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 11(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34436455

RESUMO

Early life represents a window of phenotypic plasticity. Thus, exposure of the developing fetus to a compromised nutritional environment can have long term consequences for their health. Indeed, undernutrition or maternal intake of an obesogenic diet during pregnancy leads to a heightened risk of type 2 diabetes (T2D) and obesity in her offspring in adult life. Given that abnormalities in beta-cell function are crucial in delineating the risk of T2D, studies have investigated the impact of these exposures on islet morphology and beta-cell function in the offspring in a bid to understand why they are more at risk of T2D. Interestingly, despite the contrasting maternal metabolic phenotype and, therefore, intrauterine environment associated with undernutrition versus high-fat feeding, there are a number of similarities in the genes/biological pathways that are disrupted in offspring islets leading to changes in function. Looking to the future, it will be important to define the exact mechanisms involved in mediating changes in the gene expression landscape in islet cells to determine whether the road to T2D development is the same or different in those exposed to different ends of the nutritional spectrum.

2.
Proteomics ; 18(17): e1800266, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30035390

RESUMO

Extracellular vesicles (EVs) are lipid-bilayered vesicles that are released by multiple cell types and contain nucleic acids and proteins. Very little is known about how the cargo is packaged into EVs. Ubiquitination of proteins is a key posttranslational modification that regulates protein stability and trafficking to subcellular compartments including EVs. Recently, arrestin-domain containing protein 1 (Arrdc1), an adaptor for the Nedd4 family of ubiquitin ligases, has been implicated in the release of ectosomes, a subtype of EV that buds from the plasma membrane. However, it is currently unknown whether Arrdc1 can regulate the release of exosomes, a class of EVs that are derived endocytically. Furthermore, it is unclear whether Arrdc1 can regulate the sorting of protein cargo into the EVs. Exosomes and ectosomes are isolated from mouse embryonic fibroblasts isolated from wild type and Arrdc1-deficient (Arrdc1-/- ) mice. Nanoparticle tracking analysis-based EV quantitation shows that Arrdc1 regulates the release of both exosomes and ectosomes. Proteomic analysis highlights the change in protein cargo in EVs upon deletion of Arrdc1. Functional enrichment analysis reveals the enrichment of mitochondrial proteins in ectosomes, while proteins implicated in apoptotic cleavage of cell adhesion proteins and formation of cornified envelope are significantly depleted in exosomes upon knockout of Arrdc1.


Assuntos
Arrestinas/fisiologia , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Proteoma/metabolismo , Animais , Camundongos , Camundongos Knockout , Domínios Proteicos
3.
Sci Rep ; 6: 24045, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048792

RESUMO

The regulation of divalent metal ion transporter DMT1, the primary non-heme iron importer in mammals, is critical for maintaining iron homeostasis. Previously we identified ubiquitin-dependent regulation of DMT1 involving the Nedd4 family of ubiquitin ligases and the Ndfip1 and Ndfip2 adaptors. We also established the in vivo function of Ndfip1 in the regulation of DMT1 in the duodenum of mice. Here we have studied the function of Ndfip2 using Ndfip2-deficient mice. The DMT1 protein levels in the duodenum were comparable in wild type and Ndfip2(-/-) mice, as was the transport activity of isolated enterocytes. A complete blood examination showed no significant differences between wild type and Ndfip2(-/-) mice in any of the hematological parameters measured. However, when fed a low iron diet, female Ndfip2(-/-) mice showed a decrease in liver iron content, although they maintained normal serum iron levels and transferrin saturation, compared to wild type female mice that showed a reduction in serum iron and transferrin saturation. Ndfip2(-/-) female mice also showed an increase in DMT1 expression in the liver, with no change in male mice. We suggest that Ndfip2 controls DMT1 in the liver with female mice showing a greater response to altered dietary iron than the male mice.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ferro da Dieta/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Animais , Células CHO , Proteínas de Transporte/metabolismo , Cricetulus , DNA/análise , Enterócitos/citologia , Feminino , Genótipo , Homeostase , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Mutagênese , Fenótipo , Transferrina/metabolismo , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...